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Abstract

Based on the experimental identification of the phase transformation surface, a modelling of shape memory alloys
anisothermal behaviour is proposed. Within the framework of the thermodynamics of irreversible processes, two inter-
nal variables are chosen: the stress-induced martensite volume fraction and the self-accommodating martensite volume
fraction. A special attention is paid to take into account the asymmetry between tension and compression behaviours.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

As in the classical plasticity theory, the determination of the forward phase transformation surface (aus-
tenite (4) — martensite (M)) or reverse (M — A) under evidently proportional loading, at least, for some
different external conditions, constitutes a modelling key point.

The determination of these yield surfaces needs multiaxial experiments as tension (compression)-torsion
or tension (compression)—internal pressure on tubular specimens and bi or tri-compression on cubes.
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Nowadays, some recent experimental determinations in 2D situations appear in the literature (Lim and
Mac Dowell, 1999; Raniecki et al., 2001; Bouvet et al., 2002, 2003). One has to say that the yield loading
point detection is more easy for the forward phase transformation 4 — M than for the reverse one M — A4
(see the usual shape of the shape memory alloys (SMA) stress—strain curve, particularly in the case of cop-
per-based alloys).

The modelling of the phase transformation initiation surfaces can also be obtained by an homogenisa-
tion process of the basic crystallographic phase transformation between the mother phase 4 and the prod-
uct phase M (cubic — tetragonal, orthorhombic, monoclinic, etc.). In this case, a particular attention must
be paid to the Hadamard’s conditions or interface compatibility between austenite and martensite variants
which are twinned or untwinned (Lexcellent et al., 2002).

In the present paper, a classical phenomenological model with internal variables in the frame of the ther-
modynamics of irreversible processes is proposed. The shape of phase transformation initiation surfaces
constitutes a serious ingredient of the model. This model is extended to describe the thermomechanical
behaviour with the introduction of an additional internal variable linked to the thermal effects. In a first
part, the main experimental characteristics of the SMA behaviour are described. In a second part, a model
taking into account these characteristics is built.

2. Basic experimental features: Forward phase transformation initiation surface

For Ni-Ti alloys with different compositions, Raniecki et al. (2001) on one hand (Fig. 1) and Bouvet
et al. (2003) on other hand (Fig. 2) realise tension (compression)-torsion tests on thin walled tubes. The
two investigations lead to the prime observations:

(i) The asymmetry between tension and compression is obvious as it was observed on the same alloy for
pure tension—compression tests made by Orgeas and Favier (1998). The critical stress for forward
phase transformation in tension (initial limit of pseudoelastic flow) ¢4 is smaller than the absolute
value of the corresponding critical stress ¢ < 0 in compression, i.e. of¥ < —g@". Hence, an
Huber—von Mises criterion cannot be suitable (Fig. 1).

(ii) The limit curve (g,/37) in the stress space, does not depend on the sign of the shear stress 7 (Fig. 2).

In this context, the limit surface can be described as

Vi(a, T) = oo — 0" (T) = 0 (1)
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Fig. 1. Assymmetry of 4 — M pseudoelasticity limit surfaces for different temperatures. Dotted line: Huber-Von Mises modeling
(Raniecki et al., 2001).
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Fig. 2. Yield experimental points of phase transformation initiation for Ni-Ti polycrystal (Bouvet et al., 2003).

where ¢ being the Cauchy stresses tensor; o3 (T) represents the scalar yield value of forward phase trans-
formation. Hence under the external temperature 7 for pure tension ¢i¥(7) = ¢4"(T) and for pure com-
pression oy (T) = —at(T)

12 )
s =aftr) o= (jdevgsdeva) |y, =3 S @)

This choice of the effective stress o expression supposes that the phase transformation does not depend on
the hydrostatic pressure. The explicit choice of the yield function . is open but must guarantee its convex-
ity in the stress space.

Referring to Fig. 1, the yield value oj¥(T) can be linearised as a function of the temperature 7:

03" (T) = b(T — M) 3)

M? constitutes the classical martensite initiation temperature under stress free state.

This expression corresponds to the extension of the classical Clausius—Clapeyron diagram (o, T) under
multiaxial proportional loading.

Tension (compression)—internal pressure tests on tubes and bi-compression tests on cubes made of a Cu—
Al-Be alloy (Bouvet et al., 2002) permit to gather important data making the choice of the function f{y,)
more easier. For instance, Bouvet et al. (2002) choose:

700,) = cos cos™!(1 —3a(1 -¥,)) )

where « is a material parameter. This expression yields a convex forward phase transformation criterion
for all values of @ varying within the range [0, 1] (Fig. 3). The value ¢ = 0.7 has been experimentally iden-
tified by the authors. From tensile loading on the same Cu—Al-Be alloy it has been established that b =
3 MPa/°C.
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Fig. 3. Pseudoelastic yield surface range in the deviatoric stress plane representation (o1, oy, oy eigen-stress).

Concerning the theoretical prediction of the yield surface (Fig. 1), Raniecki et al. (2001) postulate the
following empirical formula for f{y,), such as fly, =0) =1, y, = 0 corresponding to pure shearing:

with h=1.17, ¢ =0.37 and d = 0.78 for their Ni-Ti alloy.

Concerning the Cu-Al-Be alloy, the normality of the phase transformation strain rate to the yield sur-
face has been clearly established (Fig. 4). In the particular case of a time-independent behaviour, the fol-
lowing flow rule can then be introduced for the forward transformation (4 — M):

. OYp . Oog

= Jp—Lt =] 6
[ Fag Fag ()

Following the classical plasticity theory, such a normal evolution law is established from the maximum
dissipation principle associated with a constrained convex region Q, = {a/y/}.(¢) < 0} defining the elastic
domain. More generally, any convex region Q, = {g/k(g) < 0} with x(¢) =0 when Y5 (a) = 0 and x(g) <0
when /{(¢) < 0 can be used. This allows us to built normal evolution laws for the reverse phase transfor-
mation since in this case, the constraint elastic domain is not convex (see Egs. (49) and (50)).

3. SMA behaviour modelling basic concepts
3.1. Thermodynamic potentials forms

Consider a representative volume element (RVE) of SMA in single solid phase state at the reference
stress state ¢ = 0 and at the reference temperature 7'= T;. This phase is conventionally called “austenite”
(A) and is regarded as a high-temperature phase. It can be transformed in a self-accommodating martensite
(M) by pure cooling or in a stress-induced martensite (M,) under pure mechanical loading.

The martensite partition in Mt and M, is nowadays well accepted (Brinson, 1993; Leclercq and
Lexcellent, 1996; Juhasz et al., 2002). In what follows, the austenite thermomechanical properties will be
indexed o = 1, the self-accommodating martensite o = 2 and the stress-induced martensite o = 3.
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Fig. 4. Normality of the phase transformation directions to the forward yield surface.

Suppose that a non-equilibrium state of the three phases mixture RVE is described by the following vari-
ables: ¢, is the total strain tensor of each phase (« = 1,2,3); T the temperature; zt the self-accommodating
martensite volume fraction; z, the stress-induced martensite volume fraction; Hj, a set of internal variables
(k e N).

The internal variables represent the RVE internal pattern rearrangements at the micro-scale level.
Neither their number nor their physical characters will be specified here. But an example of these internal
variables Hj can be the internal stress tensor g; (called also back-stress) developed under the external stress
action (g).

Consider the following form of the specific free energy ¢, of a solid three phases mixture (Leclercq and
Lexcellent, 1996):

O,(en, Tyz1,26, Hy) = (1 — 2) ) + 2195 + 2o03 + Ap; z=1zr+2z,, 2z,2z1,2, € [0,1] (7)
with

b=t~ T 56— 2 Lo — ) [T = To) — T L ()] ®)

2p = Ty

and

Ap = z(1 = 2)¢,(T) 4 212,45 (T) )
where

Gi(T) = tto — Tso, 3 (T) = ug — T'sg (10)

The exact form of A¢ remains an open problem since it strongly depends on the incompatibilities between
the martensite platelets and between martensite and austenite.

The elastic stiffness tensor L, the thermal expansion coefficient « and the specific heat C, are supposed
independent of the phase state, i.e., whatever o = 1, 2 or 3:

=T —T)l=¢" &£=L"'o=¢ (11)
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Moreover
e =& =0, & =K(H,) (12)

Assuming that the total macroscopic strain tensor ¢ and the total intrinsic strain tensors g, (« = 1,2,3)
must comply with the following relation:

e= (1 —2z)er + zr& + 2483 (13)

corresponding to a series arrangement which is equivalent to the Reuss bound model for the response of an
austenite—martensite composite, the Helmholtz specific free energy function of the three-phase system in
constrained equilibrium (Raniecki et al., 1992) is

T
Geg(&. T, 27,20, Hy) = uy — Tsg — zmo(T) + ¢, (T—To)—TLn(?>}
0

Lo — 2, K(Hy) — (T — To)1] : Lle — 2,K(Hy) — (T — Ty)1]

_'__
2p
+2(1 = 2)¢; + 212, (14)
where
T (T) = Aug — TAsy, Aug = ujy —u, Asy = sy — s (15)

We now introduce the concept of “optimal internal arrangement’ following which the set of the internal
variables H; minimises the free energy function (14). In Raniecki and Lexcellent (1998), it has been estab-
lished that the quantity K.q(Hy) can be derived from a positively homogeneous function of first order g*(a)
such as

0 Keo(Hy) = pg*(a) (16)
So
Keg(t) = p 5\ (17)

Taking into account the definitions of the previous section for the forward transformation:

g'(0) = "/Gef (18)

7 being the maximum phase transformation strain in pure shearing.
Denoting qﬁeq the specific free energy function for an optimal internal arrangement, i.e. ¢eq Peq| K—Keg?
the associated Gibbs’ function g such as pg = pd) —ag:gis

T 1
pg = p(uO—Tso—zno( )—i—cb{(T—TO)—TLn(—)])—i (L7t 0—2,0: Keg — (T — Tp)a: 1
X L
+ pz(1 = 2)y, + pzrz, ¢} (19)
and
0
g= —pé =&+ +e" &£=L"o, & =zKyq "=0a(T—T)l
og
§=—=>= —ZASO—|— a:14+z(1 —2)8 + zrz:5, + ¢, Ln
orT T
3 { (20)
g
ﬂgf—aj ;Qiﬁeq—(l 22)py, — zrly + m(T)

th= — 28 = (1= 22, — 28 + (D)
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One must underline the important strain component:

g = ZoKeq (21)
specifically associated with the phase transformation and which takes by time differentiation:
gtr = ZaKeq + ZJKeq (22)

For proportional loading (K.q = 0), the first right term is consistent with a normal phase transformation
evolution. Hence, taking account for (17), (18) and (6) (forward transformations cases):

Oo f
Keq =7 -
g

and }lp = yZ, (23)
The second right term of Eq. (22) may be identified as the non-proportional loading contribution.
3.2. Clausius—Duhem inequality

In a classical way, the Clausius—Duhem inequality is written and gives for the intrinsic dissipation the
following expression:

D=z +nlzr =0 (24)

In the particular case of pure reorientation of self-accommodating martensite platelets Mt — M, under a
pure stress action, the conditions are:

ty=—ir (zr=1-2,) and D,=n% %, >0 (25)
where 7! is the thermodynamical force associated with the reorientation:
1
Mor = =0 : Keq — (1 = 22,) ¢} (26)
p

Two other important cases can also be examined:

(i) pure thermal action 4 < M+ (cooling or heating). In this case z, = 0, so:

Di=ntzr =0 (27)
Hence
A—Mr ifzx >0 (2 >0
L o8
MT—>A lsz§0(TET§0)
(i1) pure stress action A4 « M, (pseudoelasticity or superelasticity). In this case zr = 0, so:
D=1z, >0 (29)
Hence
A—M, ifz, >0 (x >0)
: ¢ (30)
M,—A4 ifz,<0 (x <0)

3.3. Heat equation

From the thermodynamics first principle, the heat ¢ exchanged per unit of mass is given (in it derivative
expression) by

g=pi—c:é (31)
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where u is the phase mixture specific internal energy such as
pu=pg+pls+ao:e (32)
From the previous equations, it comes:

pe,T — = p(Auy — (1 — 22)itg)z — Tog : 1 + 90ez, — p(212, + 212, )il (33)

3.4. Model parameters identification

Following a proposed idea by Brocca et al. (2002) in the case of one dimensional situations (tension or
compression) and its extension by Juhasz et al. (2002) for proportional loading, a “Clausius—Clapeyron”
diagram can be built as the effective stress o.¢ versus temperature 7' (Fig. 5). This diagram is based on exper-
imental observations: at low stresses, it becomes hypothetical to distinguish self-accommodating martensite
and stress-induced martensite. In order to overcome this problem for forward transformations in the (o, 7)
space, a self-accommodating martensite domain is defined at low stresses for 7 < M} in addition to two
domains A (austenite) and M, (stress-induced martensite).

For the model parameters identification:

(i) The measurement of M" and 4°, which are the values of forward and reverse transformation-start
temperatures at stress free state respectively, delivers two data:
i (c=0,T =M’ zr = 0,2, = 0) = (Aug — tig) — (Asy —50)M° =0 for 4 — My

34
7TT(O'—0 T = AO TZI,ZUZO):(AM()—FIQ()) (ASO+S0) —0 fOI'MT — A ( )

%7 A

M M

Fig. 5. “Clausius-Clapeyron” diagram in the (o.s,7) plane.
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(ii) Concerning the pseudo-elastic behaviour, the yield states at which the forward and the reverse trans-
formations are initiated, are such as putting: g: Koq = yo.s

7 (er, Ty21r = 0,2, = 0) = 7' (60, T = M,z = 0,2, =0) for 4 — M, (35)
Hence

Ao — 3
b — oy~ LB 0y g (36)

or by derivation:
doer _ p(Aso —50)

=C 37
dr Y M (37)
C)y being obtained from different isothermal curves in the pseudo-elasticity range and
ng(aef, T,zr =0,z, =1) — ni(O, T :Ag,zT =0,z,=1)=0 forM, — 4 (38)
Hence
A

P S"y* %) (g A =0 (39)
or by derivation:
do. A 5

aer P So+So):CA (40)

dr Y
C 4 being also determined experimentally.

(i) About the reorientation process, the yield state at which the reorientation process is initiated is gov-
erned by the following conditions:

ngT(Gcf,T,z,,zo,zT: 1)—’/[£T(O'0,T=MS,Z,,:0,ZT: 1)=0 for Mt — M, (41)
Hence
Get — 0o +§5;;‘(T—M2) =0 (42)

or by derivation:

dos  p_,

ar ~ 0 = G (43)

Moreover, at any starting point of the reorientation process, ' = 0, hence:

yr(00, T = M{, 21 = I»ZUZO)Zao—E(itB”—MSEB”):O (44)
4

The seven equations (35), (38), (41), (44) and (45) are sufficient to estimate the six model parameters Auy,
ASO, Up, So, ﬁg’ and §6n

3.5. System evolution and kinetics

The instability of the thermodynamic equilibrium implies that it does not exist any thermodynamic rela-
tion giving the hysteresis loop branches equations. Nevertheless, such equations are needed to determine
the evolution laws of z, and z,. These laws have to be combined with the behaviour relations in order to
completely define the system behaviour.
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Let us assume that there exist five constitutive functions W/, yr, Y5, ¥ and " that are, respectively,
linked to the forward phase transformation (F: austenite — martensite) the reverse one (R: martens-
ite — austenite) and to the reorientation process of the self-accommodating martensite. The superscripts
o and T refer to the martensite type involved during the process. The functions g and /g, which are avail-
able for each kind of martensite, in addition to lp"T, which is devoted to the reorientation, complete the
behaviour constitutive equations.

Concerning the forward phase transformation (4 — M) or (4 — M) and the reorientation process of
self-accommodating martensite (Mt — M,):

Vi(a, T,zp,2r) = b — kG, Wp(T,20,21) = b —kty, ¥ (0, T,2,) = ntp — k7T (45)

The functions &, kp and kT are derived from the kinetics forms proposed by metallurgists as Koistinen
and Marburger (1959). . o o
For instance, one can propose with the help of the consistency conditions Y =0, Yy =0and y =0:

a

z,=(1—z,) s IPA bagTexp [—bp(T — MY)|| for 4 — M,
pAso
ZT = (1 — ZT)LZ};T for 4 — MT (46)

oT

fo=(1-z,) %

—— 6y for Mt — M,
pAso

af, ar, a’", b and by being material constants.
Concerning the reverse phase transformation (M, — A); (Mt — A):

lp?{(ga T’ZmZT) = _nf(;‘ + kaRﬂ ¢£(T72072T) = _nfT + k—El; (47)

A unique yield function can be built in the deviatoric stresses plane for all the possible reverse transfor-
mations by considering proportional loading paths or radial loading o = ¢(f)agg, g9 being a constant tensor
and ¢(7) a positive time-dependent function. Taking account for the yield criterion form for the forward
phase transformation, it comes:

lpf{(ga TaZmZT) = —0¢ + O_(JMA(T;ZMZT) (48)

o)™ being the threshold stress during the reverse phase transformation M, — A.

The use of the maximum dissipation principle in order to derive the complementary evolution laws re-
quires a convex constraint region (elastic domain) to assure their uniqueness. However, in the particular
case of the reverse phase transformation, the elastic domain is not convex, what suggests the building of
a non-associated constitutive frame by using of a constitutive function (g, T, z,, z1) verifying:

k(a,T,z,,z1) <0 when y3(a,T,z,,21) <0

49
K(g7 T7Z‘T’ZT) = O When w%(g7 Taz(HZT) = O ( )

Such a function can be chosen as the support straight to the convex domain delimited by the yield function
Y (o, T,z,,2zr). Hence:
gtr
k(0 T 20,71) = =0 o 0! (T, 20, 21) 0
ef

and then (refer to (17)):

tr
A 0 )
= 92,5 e Keg=p— |-+ 51
é VZ i i.e. Keq paa< pK) (51)
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As previously done, z, derive from the consistency condition x//; =0:

,yac . o 0 0
pTEOGef — bragTexp [—br (T — A))] (52)

Zs = Zg

ay, by and bg being material constants.

The condition &;:0 allows us to obtain zr.

As the model is built starting from the experimental determination of yield surfaces (4 — M,, the Figs.
1, 2 and 4 exhibit a strong asymmetry between tension and compression (see the dotted line representing
symmetry on Fig. 1).

When the important property of asymmetry between tension and compression is not taken into account,
it is natural to define the effective phase transformation strain ¢} as the von Mises equivalent strain as it was
done by Juhasz et al. (2002) or Helm and Haupt (2003). However, when the tension—-compression asymme-
try is taken into account, it can be stated that for proportional loading:

gtr 2 1/2
e " A <§T§u§"> (53)
< 2(y,7)+9(§—y{7) (1 —yg)>

With this definition, & depends on stresses trough y, (2). To overcome this problem, y, must be expressed
as a function of the phase transformation strain tensor & for every proportional loading. Nevertheless, an

analytical expression of this function cannot be easily derived but the following approximation can be used
(Bouvet, 2002) (Fig. 6a):

1 —y, det(e"
), e

(fz( : -1-9(;71)2(1 —yi))m f(=1"’

The difference between the right-hand member and the left-hand one does not exceed 2.5% whatever a vary-
ing with the range [0, 1] (Fig. 6b).

(54)

2’[ = —CZ;ZTT (55)

ay being also a material constant.

13 3
12 £
. 5 21
o
1.1 =
>
ET
1 &
S
0.9 04
1 0 0% 05 075 1
a
(b)

Fig. 6. Approximation function for effective phase transformation strain computation.
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3.6. Effective phase transformation strain

Whatever phase transformation (4 — M, or M, — A), yz,, defines the equivalent or effective transfor-

mation strain rate & such as
0 & = ogéy

at the loading point.

3.7. Summary of the model

Table 1 gives the summary of the model.

Table 1
Summary of the model

(56)

R.V.E. behaviour
Choice of the free energy function ¢ and of the associated Gibbs function g

: T
pg = p(u(l) — Tsp —zm (T) + ¢, {(Tf Ty)—T Ln<?>}>
0
38 L0 2 Ky — ol ~ To)a:l 4 p(l =)y, + peze (n

Internal variables:
e Stress induced martensite fraction z,
e Thermal induced martensite fraction zr

3 12 27 det(d
o =6/(V;), G= (zdevg:devg> v Ve :7w

a
Og f og f Og
&= P@v HG**aZ/ “T:*a7
e tr th e —1 tr 0ot th
g=g 4"+ £=Le, "=z, =TTl

Forward phase transformation 4 — M, or A — Mt and Mt — M,
Vi(o,T,z5,21) = b = k%, Wi(Tozeyzr) = — ki, Y7 (0, T,2,) = by — k7"

efficient choice of iy, k,T: and £°T and consistency equations l//; =0, l//E =0 and 12/6T = 0 determines the kinetics
zo=ford — M,, zr=ford— My, z,="forMt— M,

Reverse phase transformation M, — 4 My — A

Wi = —0u + 0y (T, 25,21) g = —7 + ke

« T
ef lﬂR:O—>ZT:

Effective phase transformation strain &} defined as oerély = 0 : &
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4. Conclusion
The originality of the present work comes from

(i) The experimental determination of the initiation surfaces of phase transformation to built the model
as it was done for classical elastoplasticity models.
(ii) A consistent constitutive frame for the reverse phase transformation has been derived within the con-
text of the generalized standard materials theory using non-associated approach.
(ii1) A general definition of the effective phase transformation strain.

Modelling anisothermal SMA behaviour under proportional loading seems to be a solved problem, at
least for the forward transformation. On the opposite of Juhasz et al. (2002), the choice of the equivalent
or effective stress oo accounting for the tension—compression asymmetry does not allow to substitute as an
internal variable the stress-induced martensite volume fraction z, by an equivalent phase transformation
strain in the von Mises sense. Besides, the introduction of a back-stress tensor as internal variable by Helm
and Haupt (2003), is an interesting idea for non-proportional modelling. An important forthcoming work
could concern the best understanding of the cyclic behaviour and the associated two-way shape memory
effect for an SMA efficient use in technological applications.
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